
White paper

Born for the Enterprise,
Stronger in the Cloud
Carrie Ballinger
Cloud Architecture Performance Solutions

2

2	 Introduction

3	 Born with: Multidimensional parallel
capabilities

5	 Born with: Optimizer with a 360-degree
perspective

7	 Born with: BYNET’s considerable contribution

9	 Born with: Workflow self-regulation

11	 Born with: Workload management

12	 Evolution: Enhancements to workload
management

13	 Evolution: Database extensibility

14	 Evolution: Being parallel in the ecosystem

15	 Today: Cloud-native Teradata
VantageCloud Lake

18	 Today: Preexisting features enrich
VantageCloud Lake capabilities

21 	Conclusion

Table of Contents Introduction

During the Great Depression of the 1930s, my grandmother
had to become frugal to survive. This meant making the
most of what she had and not wasting anything. Her family
never threw out food, always turned off lights when leaving
a room, and saved every penny. My grandmother’s entire
life was oriented around efficient use of resources learned
during a time of scarcity. While she adopted this approach
out of necessity during the Depression, she passed those
traits down to her descendants. Through the decades, these
thrifty habits have served myself and my family well, even in
times when resources are more plentiful.

Teradata was born and grew up centered on complex
enterprise platforms. Like families scraping by in the Great
Depression, enterprise users had to learn how to live in a
world of limited and inflexible assets. During its initial years,
Teradata responded to the needs of customers running on
fixed-size systems by making widespread economies inside
the database not just a nicety, but a “must-have.”

Teradata’s architecture has been designed with efficiency
and cost at top of mind. A strong focus on fine-tuning
in the enterprise world for over 30 years has led to high
performance with the least possible effort. Just like turning
off the lights when you leave a room, weeding out wasted
resources or streamlining algorithms saves money.

As Teradata has advanced into the cloud, its past has
not become a liability. Instead, having been born for, and
reaching adulthood in, the enterprise world gives Teradata
an edge in maturity, robustness, cost-effectiveness, depth
of parallel capabilities, and the variety of optimizations.
Although resources in the cloud may be infinite, budgets
are not. Because of the craftsmanship embraced during its
enterprise-focused years, Teradata has established itself in
the cloud having already solved problems that other cloud
vendors do not even know exist.

The focus of this paper begins with some of the key
“born with” characteristics that were architected into the
Teradata database. Next, it will cover some of the notable
evolutionary steps that enriched the original capabilities.
Finally, the paper will discuss the impact of these existing
and evolving competencies on Teradata’s cloud-native
offering, VantageCloud Lake.

https://www.teradata.com

3

Everything in the Teradata database was designed for
parallelism—from the entry of SQL statements to the
smallest detail of their execution—to weed out any possible
single point of control and to effectively eliminate the
conditions that can breed gridlock in a system. This section
describes three basic dimensions of parallelism that were
architected into the database.

1. Parallel execution across all units
of parallelism
Everything that happens inside Teradata’s database is
distributed across a predefined number of parallel units
called AMPs. Each AMP acts like a microcosm of the
database, supporting such things as data loading, reading,
writing, journaling, and recovery for all the data that it owns.

While the AMP is the fundamental unit of parallelism,
there are two additional parallel dimensions woven into
the database, specifically for query performance. These
are referred to here as “within-a-step” parallelism and
“multistep” parallelism. The following sections describe
these two capabilities.

2. Within-a-step parallelism
When the Teradata optimizer builds a query plan, it breaks
work into one or more execution chunks known as “steps”.
Each of these steps can include multiple distinct operations.
Within-a-step parallelism is when multiple operations within
a step flow into each other so that several operations can
overlap and execute in parallel (see Figure 2).

Born with:
Multidimensional parallel capabilities

AMP 4

AMP 3

AMP 2

AMP 1

Loading Backup and
Recovery

Building
Indexes

Transaction
Journaling

Reading/
Writing

Aggregating

SortingRow Locking

AMP 1’s Data

Figure 1. Inside of a single unit of parallelism

AMP 4

AMP 3

AMP 2

AMP 1
Select and project Product table

Select and project Inventory table

Join Product and Inventory tables

 Redistribute joined rows to other AMPs

TI
M

E
1

-
St

ar
t s

te
p

TI
M

E
2

TI
M

E
3

TI
M

E
4

St
ep

 d
on

e

Figure 2. Multiple operations executing in parallel within a single query step

https://www.teradata.com

4

3. Multistep parallelism
Multistep parallelism is enabled when the optimizer chooses
to execute multiple steps of a query simultaneously, across
all the participating units of parallelism (see Figure 3).

Figure 3 shows four AMPs supporting a single query’s
execution, and the query has been optimized into seven
steps. Step 1.2 demonstrates within-a-step parallelism as
described in the section above. Steps 1.1 and 1.2 execute at
the same time, illustrating multistep parallelism, as do steps
2.1 and 2.2.

Born with: Multidimensional parallel capabilities

Scan Stores

1.1

Join Product
and Inventory

Redistribute
1.2

Join Items
and Orders

Redistribute
2.2

Join spools

Redistribute
2.1

Join spools

Redistribute
3

Sum step

4

Return final
answer

5

Within-a-step Parallelism
Multiple operations are pipelined

1. Scan Product
2. Scan Inventory
3. Join Product and Inventory
4. Redistribute joined rows

Multi-step Parallelism
Do step 1.1 and 1.2 and also steps 2.1 and
2.2 simultaneously

Query Execution Parallelism
Four AMPs perform each step on their
data blocks at the same time

Figure 3. Multiple dimensions of parallelism

https://www.teradata.com

5

Having an array of parallel techniques can turn into
a disadvantage and may lead to congestion if they are
not carefully applied around the needs of each request.
Orchestration of the different parallelization techniques
is driven by the query optimizer, which lives within a
component called the “parsing engine” (PE).

Join planning
Joining tables in a linear fashion (join table 1 to table 2, then
join their result to table 3, and so on) can increase query
time, particularly for queries joining hundreds of tables.
Instead, the Teradata optimizer can choose to join multiple
tables simultaneously, leveraging different types of joins
(e.g., hash join, merge join, product join) to build a more
condensed query plan.

The figure below illustrates the differences when
optimizing a six-table join between a plan that is restricted
to linear joins, and one that has the option of performing
some of the join steps in parallel.

Sizing up the environment
In addition to the parallelism methods described above,
the optimizer considers numerous other factors, including
the characteristics of the data itself, the number of AMPs
on each of the nodes, and the processing power of the
underlying hardware. Putting all this information together,
the optimizer comes up with an estimated cost in terms of
resources expected to be used for each of several candidate
query plans, then picks the least costly candidate.

Synchronizing table scans from multiple queries
Another cost-saving technique in Teradata’s platform is
the synchronized scanning of large tables. This Teradata
optimizer option permits a new full-table scan to begin
at the current point of an ongoing scan of the same table
that is part of another session. Piggybacking table scans
reduces the input/output (I/O) load and supports
higher concurrency.

Born with:
Optimizer with a 360-degree perspective

Table 1 Table 2

Join Table 3

Join Table 4

Join Table 5

Join Table 6

Join

Plan with serial joins

Table 1 Table 2 Table 3 Table 4

Join Table 5 Join Table 6

Join Join

Join

Plan with parallel joins

Figure 4. A serial query plan vs. a bushy query plan

https://www.teradata.com

6

Optimizer evolution
Although the fundamentals have remained the same, the
Teradata optimizer has continued to evolve over time to meet
changing customer needs.

Adaptive optimization
Typically, the optimizer will build a static query plan that is
then executed by the system. However, the optimizer also
can interleave optimization with execution within a single
query. This is called adaptive optimization.

Adaptive optimization is not wasted on short or simple
queries. The optimizer picks and chooses when to apply this
technique and determines eligible requests based on certain
thresholds—for example, expected execution time.

Adaptive optimization builds what is called a “dynamic
query plan.” It breaks a query into blocks of steps called
“fragments.” A plan is built for the first fragment, it executes
on the AMPs, and intermediate results are returned to
the optimizer. Then, input from the previous fragment is
considered and the next fragment is optimized,
then executed.

Query rewrite
Another advanced optimizer technique is to rewrite queries
to eliminate redundant logic. One example is producing a
temporary dataset within a query to use as input to multiple
subqueries later in the plan, rather than rebuilding the data
set multiple times.

Other examples of query rewrite are moving blocks of SQL
code in the query around to achieve predicate simplification,
view folding for more optimal join plans, and “projection
pushdown,” which eliminates unnecessary
column projections.

Joining relational data to external object stores
The Teradata optimizer can incorporate several different
open file formats (OFF), such as Parquet, JSON, and CSV, as
well as open table formats (OTFs), such as Apache Iceberg,
into a single query execution. It can then join that external
data to relational tables inside the database.

Key to optimizing queries with external object store data
is the distribution of objects evenly across all AMPs in the
configuration to leverage Teradata’s parallel architecture. In
a later chapter (“Evolution: Being parallel in the ecosystem”),
additional information about how this processing balance
has been achieved is explained for the initial external object
tier, OFF.

While the optimizer may not hold the purse strings, it
certainly has a major influence in how and where money
is spent. The goal in all these ever-evolving optimizer
capabilities is the same: Ensuring that Teradata
customers enjoy the best performance and lowest
possible cost per query.

Born with: Optimizer with a 360-degree perspective

Static Query Plan Dynamic Query Plan Using Adaptive Optimizer Techniques

Request

Optimizer Generates
a Static Plan

AMPs Execute the
Entire Plan

Results

Request

Identify the Fragment and Generate
a Plan for the Fragment

AMPs Execute the
Fragment

Last
Fragment? Results

YESNO

Figure 5. Adaptive optimizer generates a dynamic query plan

https://www.teradata.com

7

Another important component of the Teradata
architecture is referred to as the “BYNET.” This acts as
the interconnection between all the independent parallel
components. Originally implemented within the hardware of
traditional on-premises Teradata systems, this functionality
is now implemented as software.

Beyond just passing messages, the BYNET is a bundle
of intelligence and low-level functions that aid in efficient
processing at practically each point in a query’s life. It
offers coordination as well as oversight and control to every
optimized query step.

In short, the BYNET acts as an air traffic controller,
ensuring that the entire system is working in concert and
managing unusual situations as they arise. This can include
adjusting to hardware failures, monitoring for points of
congestion, or even sequencing results from across
parallel units.

Messaging
A key role of the BYNET is to support communication
between the PE and the AMPs and from AMPs to other
AMPs. These simple message-passing requirements are
fulfilled using a low-level messaging approach, bypassing
more heavyweight protocols for communication to:

•	 Send a step from the PE to AMPs to initiate a query step

•	 Redistribute rows from one AMP to another to support
different join geographies

•	 Sort and merge a (potentially very large) answer set
across multiple AMPs

 The BYNET illustrates how cost savings inside the engine
have been instilled into Teradata from the very beginning.
Even though message protocols are low cost, Teradata goes
further by minimizing interconnect traffic. Localized activity
that can be performed without moving data outside of an
AMP is encouraged whenever possible.

Born with:
BYNET’s considerable contribution

Parsing
Engine

AMP 0 AMP 1 AMP 2

Figure 6. AMPs and parsing engines communicate using messages

https://www.teradata.com

8

Born with: BYNET’s considerable contribution

BYNET communication between AMPs
Without the BYNET’s ability to combine and consolidate
information acrosts all units of parallelism, each AMP would
have to independently connect to each other AMP in the
system to get on the same page about each query step that
is underway. As the configuration grew, such a distributed
approach to coordinating query work would quickly become
a bottleneck.

Instead, the BYNET creates a dynamic relationship between
AMPs that are working on the same query step. This loose
association of AMPs at run time is used to communicate
things between AMPs, like the completion or the success/
failure of a step on each participating AMP. This is
accomplished by signaling across semaphores, rather than
more expensive messaging.

Step 1
begins across
3 AMPs

BY
N

ET
So

ft
w

ar
eSemaphore for

step completion
is established

Step 1 Work

Step 1 Work

Step 1 Work

Completion Semaphore
Count � 3

BY
N

ET

3
A

M
Ps

Time 1

Done

Step 1 Work

Step 1 Work

Completion Semaphore
Count � 2

BY
N

ET

Time 2

Done

Done

Step 1 Work

Completion Semaphore
Count � 1

BY
N

ET

Time 3

Done

Done

Done

Completion Semaphore
Count � 0

BY
N

ET

Time 4

Message to
dispatcher for
next step

Semaphore
disbanded

Figure 7. Communication of AMPs using completion semaphores

Final answer set sort/merge
Never needing to materialize a query’s final answer set inside
the database has long been a Teradata differentiator. The
final sort/merge of a query takes place within the BYNET
as the answer set rows are being funneled up to the client.
This dynamic no-I/O merge is taking place simultaneously at
the AMP, the node, and, finally, the PE level, with the highest
values in the sort order being elevated into the answer set in
the client buffer first, until the client is ready to receive more.
The final answer set never has to be brought together, saving
considerable resources. A potential “big sort” penalty has
been eliminated—or never existed.

CLIENT

1, 2, 3

PARSING ENGINE

1, 2, 3

One sorted
buffer at a time
is returned to
the client

NODE 1

1, 3, 4

4, 8
AMP 0

4

1, 7
AMP 1

1

3, 11
AMP 2

3

NODE 2

2, 5, 6

6, 10
AMP 3

6

2, 12
AMP 4

2

5, 9
AMP 5

5

1
3

2

Parsing engine level:
A single sorted buffer of
rows are built up from
buffers sent by each node

Node level:
Builds 1 buffer’s worth
of sorted data off the
top of the AMP’s
sorted spool files

AMP level:
Rows sorted and
spooled on each AMP

Figure 8. Sorting the final answer aset inside the BYNET

The goal in all these ever-evolving
optimizer capabilities is the same:
Ensuring that Teradata customers
enjoy the best performance and
lowest possible cost.

https://www.teradata.com

9

A shared-nothing parallel database has a special challenge
when it comes to knowing how much new work it can
accept and how to identify congestion that may start to
build up inside one or more of the parallel units. Inherent
in its design, the optimizer aggressively applies multiple
dimensions of parallelism to each query that it sees. This
approach maximizes resource utilization for each query to
deliver performance and throughput. But it also means that
it’s easy to exhaust overall system resources. Fortunately,
Teradata’s platform has numerous techniques to manage
workflow to ensure optimal use of all system resources.

AMP-level control
The Teradata database manages the flow of work that
enters the system in a highly decentralized manner, in
keeping with its shared-nothing architecture There are no
messages sent between AMPs to determine if it’s time to
hold back new requests. Each AMP evaluates its own ability
to take on more work and temporarily pushes back when it
experiences a heavier load than it can efficiently process.
And when an AMP does pause to catch its breath, it
does so for the briefest moments of time, often measured
in milliseconds.

This bottom-up control over the flow of work inside the
engine is the cornerstone of the database’s ability to accept
impromptu swings of very high and very low demand and
gracefully and unobtrusively accommodate whatever comes
its way.

AMP worker tasks
AMP worker tasks (AWTs) are the tasks inside each AMP
that get the database work done. Pre-allocated AWTs are
assigned to each AMP at database startup time, and, like a
valet parking attendant, they wait for work to arrive, do the
work, and come back for more work.

Because of their stateless condition, AWTs respond quickly
to a variety of database execution needs. There are a fixed
number of AWTs in each AMP. For a task to start running, it
must acquire an available AWT. Having an upper limit on the
number of AWTs per AMP keeps the number of activities
performing database work within each AMP at a reasonable
level. AWTs play the role of both expeditor and governor.

Born with:
Workflow self-regulation

Parsing Engine
Optimized Query Steps

AMPs An AWT is acquired to do the
work within the message

Pool of Available AWTs

Step is done

AWT is released

A step is sent within a
message to the AMPs

Final AMP done sends a
completion message to PE

Figure 9. AWTs process query steps on the AMPs

https://www.teradata.com

10

Queueing up and turning away new messages
When all the AMP worker tasks on an AMP are busy servicing
other query steps, arriving work messages are placed in a
message queue that resides in the AMP’s memory. When a
message is sent to multiple AMPs, some AMPs may provide
an AWT immediately, while other AMPs may have to queue
the message. This is typical behavior on a busy system
where each AMP is managing its own flow of work.

If the message queue gets too long, arriving messages
will be rejected and returned to the sender to be re-sent
later. The impact of turning on and turning off the flow
of messages is kept local—only the AMP hit by an
overabundance of messages for that brief period throttles
back temporarily.

Riding the wave of full usage
Teradata’s platform was designed as a throughput engine,
able to exploit parallelism to maximize resource usage of
each request when only a few queries are active, while at the
same time able to continue churning out answer sets in high
demand situations. To protect overall system health under
extreme usage conditions, highly decentralized internal
controls were put into the foundation, as has been discussed
in this section.

Born with: Workflow self-regulation

NODE 1

AMP 0
Accepting new

work

AMP 1
Accepting new

work

AMP 2
Busy, queueing

up new work

NODE 2

AMP 3
Accepting new

work

AMP 5
Accepting new

work

AMP 4
Not accepting

new work

A work message is sent from the parsing engine to all AMPs

Most AMPs can
service new work

immediately

One AMP is busy
and is queueing new

work requests

One AMP has a full
queue and is returning
new work requests to

their sender to be
retried later

Figure 10. Individual AMPs push back temporarily when tehy have too much work

https://www.teradata.com

11

An earlier section in this white paper called attention to
the multifaceted parallelism available for queries on the
Teradata database. A subsequent section discussed how
the optimizer uses those parallel opportunities in smart ways
to improve performance on a query-by-query basis. And the
previous section illustrated internal AMP-level controls to
keep high levels of user demand and an overabundance of
parallelism manageable.

In addition to those automatic controls at the PE and AMP
levels, Teradata has always had some type of system-level
workload management, mainly priority differences, that are
used by the internal database routines.

The original four priorities
One of the challenges faced by the original architects of
the Teradata database was how to support maximum levels
of user requests on the platform and still get critical pieces
of internal database code to run quickly when needed. For
example, if there is a rollback taking place due to an aborted
transaction, it benefits the entire system if the reversal of
updates to clean up the failure can happen quickly.

It was also important to ensure that background tasks
running inside the database didn’t lag too far behind. If city
streets are so congested with automobile traffic that the
weekly garbage truck can’t get through and is delayed for
weeks at a time, a health crisis could arise.

The solution the architects found was a simple priority
scheme that assigned priorities to all tasks running on the
system, either user initiated or internal. This rudimentary
approach offered four priority buckets: Rush, High, Medium,
and Low, with a default of Medium.

Internal database routines and parts of query code could
be assigned to one of the other priorities, based on the
importance of the work. For example, all “end transaction”
steps are assigned the Rush priority, because finishing
almost-completed work at an accelerated speed frees up
valuable resources for new work sooner and was seen
as critical to prevent congestion within the database. In
addition, if the administrator wanted to give a favored user
a higher priority, all that was involved was manually adding
one of the priority identifiers into the user’s account string.

Impact of mixed workloads
Customer requirements shifted over time as Teradata users
began to supplement their traditional decision support
queries with new types of more varied workloads.

In the late 1990s, a few Teradata sites began to issue
direct lookup queries against entities like their inventory
tables or their customer databases at the same time as
their standard decision support queries were running. Call
centers started using data in their Teradata database to
validate customer accounts and recent interactions. Online
applications blossomed at the same time as more sites
turned to continuous loading to supplement their batch
windows, giving their end users more timely access to
recent activity. Service level goals became more important.
Today it is typical for 80% to 90% of the queries on a
Teradata system to execute in less than a second.

Stronger, more flexible workload management
was required.

Born with:
Workload management

https://www.teradata.com

12

While the internal management of the flow of work has
changed little, the capabilities within system-level workload
management have expanded dramatically over the last 25
years. As the first step beyond the original four priorities,
Teradata engineering developed a more extensive priority
scheduler composed of multiple resource partitions
and performance groups, and provided the flexibility of
assigning your own customized weighting values. These
custom weightings and additional enhancements made it
easier to match controls to business workloads and priorities
than the original capabilities designed more for controlling
internal system work. This became particularly important for
fixed-size enterprise platforms.

Additional workload management features and options that
have evolved over the years include:

•	 Ability to assign priorities and other controls by multiple
classifications, such as server name, application,
database objects referenced, or the optimizer’s
estimated statistics

•	 Concurrency control mechanisms that can be placed at
multiple levels and tailored to specific types of queries

•	 Rules to reject queries that are poorly written or that are
inappropriate to run at certain times of the day

•	 Ability to automatically reduce the priority of a running
query that exceeds the threshold of resources consumed
for its current priority

Workload management in Teradata has proven to be a
rapidly expanding area, indispensable to customers who
are combining a wide variety of work on their
Teradata platforms.

Evolution:
Enhancements to workload management

https://www.teradata.com

13

Teradata has a rich tradition of continually extending its
capabilities, both internally as well as externally. Column-
based tables, time series databases, and features like
geospatial and temporal data types are all part of the
Teradata platform today. The solid MPP foundation has
eased the way for these innovations.

The growth of special functions
Teradata allows users to create user-defined functions
(UDFs) to extend SQL functionality, including scalar,
aggregate, table, table operators, and external stored
procedures. This portfolio of special functions allows end
users and Teradata partners to create custom database
objects in Java or C++ to provide capabilities that were not
previously a part of the Teradata database. Some of these
functions even extend their activity outside the database.

In-database analytics
Teradata was the first company in the early 2000s to
pioneer parallel, scalable in-database analytics leveraging
extensibility features as described above. Over time, as
machine learning and artificial intelligence (AI/ML) became
ubiquitous within Teradata’s customer base and data
volumes grew to unprecedented sizes, it became
necessary to build low-level internal interfaces for these
types of analytics.

The implementation of these internal interfaces
allowed Teradata to scale beyond what was previously
thought possible for use cases requiring supervised
and unsupervised learning. This includes classification,
regression, segmentation, time series, and digital signal
processing. These low-level frameworks are unbounded in
terms of the number of variables and the number of series
or signals they can process simultaneously.

These extensibility features also opened the possibility of
processing languages other than traditional SQL. This has
led to a whole new set of user personas and use cases built
upon the power of the Teradata platform.

Bring Your Own Analytics
It has always been critical for Teradata to be a team player
in an overall open analytical ecosystem. For example,
Teradata’s shared-nothing MPP architecture is the perfect
vehicle for model inferencing or scoring—it’s tactical in
nature with all the data needed for inferencing available on a
single unit of parallelism.

This allows Teradata to be open to any analytical modeling
tool that can produce a consumable model format. And,
for certain strategic partners, such as H20.ai, Dataiku,
DataRobot, and SAS, Teradata’s platform can consume their
models by binding to their run-time environments. Using
either of these techniques, Teradata’s platform has become
a massively parallel scoring engine in many customers’ open
analytic ecosystem.

Further, as the popularity of the Python and R open-
source languages and packages increased in recent years,
many Python and R scripts have been put into production
environments as analytic pipelines. Building on Teradata’s
ability to process these languages through table operators,
these pipelines can be optimized and run in parallel—even
Spark-based Python scripts.

Evolution:
Database extensibility

Teradata’s ability to grow in
new directions and continue to
sustain its core competencies is
a direct result of its strong, tried-
and-true foundation.

https://www.teradata.com

14

This chapter covers additional evolutionary improvements
that were made to extend Teradata’s parallelism to the world
outside of the database.

The Native Object Store feature
In today’s environment, data of interest may reside in other
file systems or data management platforms. Teradata’s
Native Object Store feature allows users to directly read
or write data stored in cloud vendor open file format (OFF)
object stores using Teradata SQL. The optimizer will assign
the task of reading and transforming CSV, Parquet, or JSON
files across all AMPs, so as to take full advantage of the
inherent parallelism of the system.

This means OFF data is never out of reach, even though it
is stored outside of the database.

QueryGridTM
QueryGrid is a data analytics fabric that provides data
access, processing, and table-level data movement across
one or more data sources to enable federated queries. The
data sources can be of the same type, such as one Teradata
platform connecting to another Teradata platform, or
different types, such as a Teradata platform connecting to a
remote server, such as a Google BigQuery instance.

One of the things that makes QueryGrid unique is the
ability to push predicate filtering and processing closer
to the data to minimize the amount of data that must
move between the two data sources. QueryGrid enables
customers to:

•	 Minimize data movement and process data where
it resides

•	 Reduce data duplication

•	 Transparently automate analytic processing and table-
level data movement between data sources

QueryGrid was architected to take advantage of Teradata’s
built-in parallelism, enhancing its performance capabilities.
Each AMP connects to and processes a subset of the data
from a remote server in parallel.

Evolution:
Being parallel in the ecosystem

AMP 3
AMP 2

AMP 1

Advanced SQL Engine

Txn History
AMP Block Storage

SQL executes
WRITE_NOS table

operator

Each AMP redistributes
and/or sort rows

Each AMP writes its
rows in parallel

Offloading Data to Objects with NOS WRITE

Rows are processed
by the SQL request

Data is transformed
and split into rows

Each AMP reads
object data through

a foreign table

Reading Object Data into the database with NOS READ

Cloud Vendor
Object Store

Txn History

Native Object Store

Write to object
storage

Read from
object storage

Figure 11. Native Object Store parallelizes access to object file format tables

https://www.teradata.com

15

VantageCloud Lake, Teradata’s complete cloud analytics
and data platform for AI, builds upon the foundation
established in the enterprise world. This section provides
a high-level description of VantageCloud Lake, specifically
how its architecture leverages the best features of the
cloud while still preserving the key benefits of the
Teradata database.

Primary and compute clusters
The VantageCloud Lake architecture moves Teradata
from being a single large system on a fixed set of BYNET-
connected nodes into a logical collection of smaller
clusters that become the building blocks making up the
VantageCloud Lake environment.

Each VantageCloud Lake cluster is a discrete set of
processing units or nodes that are BYNET-connected, with
each node containing the familiar AMPs and parsing engines
just as does any other traditional Teradata node. Each
VantageCloud Lake cluster delivers parallelism across its
AMPs independent from other clusters.

A primary cluster is required in all VantageCloud Lake
environments. A primary cluster includes an always-on,
fixed set of nodes whose AMPs own data in persistent block
storage managed by the block file system (BFS). All queries
begin and end their execution in the primary cluster. Query
parsing and optimizing, as well as final answer set prep,
takes place on the primary cluster.

A second type of cluster is called a compute cluster. A
compute cluster is a collection of ephemeral compute-only
nodes where query work can be sent from the primary
cluster for execution. Compute clusters contain AMPs and
parsing engines, but, unlike primary clusters, they don’t have
any persistent block storage for user data and are focused
on accessing data from object storage.

Automatic addition or removal of processing power, called
autoscaling, can take place among these compute clusters.
Internal thresholds based on resource demand and usage
trigger these changes in compute power.

Today:
Cloud-native Teradata VantageCloud Lake

One Primary
Cluster

Many Compute Clusters

Figure 12. VantageCloud Lake architecture

https://www.teradata.com

16

Cloud object storage
VantageCloud Lake supports the separation of compute and
storage. All clusters in a VantageCloud Lake environment can
access the same public cloud vendor object storage. And
because cloud object storage is less expensive than block
storage, it can be used for massive amounts of business data
to be stored and analyzed cost effectively. However,
there is still a place for BFS because of its unique
capabilities, and the primary cluster can take advantage of
BFS when appropriate.

Several tiers of object storage are accessible by
VantageCloud Lake:

•	 Object file system (OFS) storage: This is proprietary object
storage managed by the VantageCloud Lake environment
that is dedicated to user tables. Tables stored in OFS
support inserts, updates, and deletes, as well as time
travel. OFS has been optimized with special indexing
techniques to support efficient access.

•	 Open file format (OFF): OFF object storage is external to
the VantageCloud Lake environment, and, depending on
security conventions, may be shared across multiple other
platforms or with trusted third parties. The definition of
the data is held within a “foreign table” stored within the
Teradata data dictionary. The Native Object Store (NOS)
feature is the method of reading and writing OFF data.

•	 Open table format (OTF) storage: Tables stored in OTF are
also external to VantageCloud Lake. OTF is an industry-
standard “open,” ACID-compliant table format that
supports open file formats. With OTF, none of the table’s
metadata is stored in the Teradata data dictionary. Instead,
all the metadata is found within the object store itself.

Optimizer enhancements for VantageCloud Lake
The optimizer as it exists in VantageCloud Lake has all the
special techniques and maturity that the enterprise optimizer
has perfected over the years. However, the optimizer also
includes some new enhancements that recognize and take
advantage of the new VantageCloud Lake architecture.

Global planner
A new component in the primary cluster optimizer, called
the “global planner,” determines where each step in a query
plan will execute, on primary or compute cluster, if compute
clusters are available. Every effort is made to push resource-
intensive work, such as reading and processing data from
object storage or doing advanced analytics, onto the
compute clusters. When the VantageCloud Lake optimizer
builds a query plan, it recognizes and considers the level of
processing power within each cluster.

Pipelining between query steps
Pipelining is a query optimization extension available on
VantageCloud Lake environments. Pipelining can improve
the elapsed time of a query by eliminating intermediate
files between steps. Traditionally, a producer step in a
query will write all qualifying rows to a temporary file to
disk, and subsequent consumer step will read the file. With
pipelining, a producer step generates rows and passes them
on to a consumer step in memory without having to write a
temporary dataset to disk. With pipelining, data is consumed
as soon as it is produced.

Pipelining in VantageCloud Lake is an option the optimizer
can apply. Pipelining in VantageCloud Lake is applied
selectively during query optimization, based on a variety of
query characteristics. Because it is one of many optimizer
options, pipelining in VantageCloud Lake preserves the
existing nuances built into the original optimized query plan.
A key goal of pipelining in VantageCloud Lake is to apply it
where it is practical and beneficial, while at the same time
honoring the query plan as it was optimized.

Today: Cloud-native Teradata VantageCloud Lake

Object File System �OFS�

Open File Format �OFF�

Open Table Format �OTF�

Transaction
Table

Inventory
Table

Daily
Sales

Customer
Table

IoT
Data

Compliance
History Archive Meter

Reporting

Public
Documents Logs

Global
Records

Figure 13. Multiple object storage tiers accessible by VantageCloud Lake

Scan
LINE ITEM

Spool 9.2
million rows

Join to
ORDERTBL

Spool 9.2
million rows

SUM step

Before
pipelining

Scan
LINE ITEM

Executed
simultaneously

Join to
ORDERTBL

SUM step

Pipelining Pipelining

Figure 14. VantageCloud Lake offers a hybrid approach to pipelining between query steps

https://www.teradata.com

17

A multicloud-aware optimizer (Amazon Web Services,
Microsoft Azure, Google Cloud)
In the Teradata platform, cost profiles have evolved to
help provide information to the optimizer about underlying
hardware capabilities of the specific configuration,
influencing the development of query plans. This capability
has been expanded in VantageCloud Lake to include cost
profiles associated with different platforms and their instance
types, including Amazon Web Services (AWS), Azure, and
Google Cloud.

For example, cost profiles might include CPU MIPS ratings
of a particular node type or I/O throughput ratings. Using
cost profiles, the optimizer can distinguish different vendor
configurations and create optimal plans around each.

Multi-storage connectivity in a single query
There may be a valid business need to pull IoT data from an
OTF table, join it to a highly curated customer table in BFS
storage, and then join the results to an OFF history table. This
can be accomplished in VantageCloud Lake within a single
query because of the open and connected architectures of
VantageCloud Lake and the intelligence of the optimizer.

The query optimizer in VantageCloud Lake is aware of the
location of data and performance characteristics specific to
each storage tier (BFS, OFS, OFF, or OTF). And, as mentioned
in the section above, there is awareness of the power of the
different vendors’ underlying hardware. This attention to
detail makes it possible to join disparate data sources in a
single query in an optimal manner.

Automated workload management in
VantageCloud Lake
A VantageCloud Lake environment can support multiple
clusters. Each cluster performs work independently of other
clusters. Because individual clusters are isolated from all
other clusters, there is less requirement for the complex
workload management that has evolved for fixed-system
enterprise platforms.

Consequently, Lake comes with a default workload
management rule set with a simplified set of priorities that
are automatically set up for each cluster. The administrator
can assign specific users to one of these default workloads if
they wish to have “explicit” priority differentiation among the
work active within the cluster.

On the other hand, queries entering a VantageCloud Lake
environment from users who are not explicitly prioritized will
benefit from automated prioritization. One of five “implicit”
priorities will be selected, based on expected execution time
of the query.

Once they begin to execute, queries that have been
implicitly prioritized will automatically be demoted to a lower
priority if their accumulated resource consumption exceeds a
specified threshold.

This simple, built-in workload management means users
new to Teradata do not have to be concerned about applying
complex rules or conditions on their workloads to use
VantageCloud Lake successfully. And experienced users
can free themselves from having to setup and monitor their
workload management decisions.

Today: Cloud-native Teradata VantageCloud Lake

TC
Tactical

TT
Timeshare

Top

HH
Timeshare

High

MM
Timeshare

Medium

LL
Timeshare

Low

Tactical requests
start here

Very short requests
start here

Short requests
start here

Medium requests
start here

Long requests
start here

Query is demoted after a very
small CPU threshold is met

Query is demoted after a small
CPU threshold is met

Query is demoted after a higher
CPU threshold is met

Query is demoted after an even
higher CPU threshold is met

Figure 15. Automated prioritization in VantageCloud Lake

https://www.teradata.com

18

This section discusses some of the Teradata capabilities
that emerged during the enterprise years that have
energized and strengthened the VantageCloud
Lake offering.

Evolution of QueryGridTM
The original QueryGrid feature is provisioned on
VantageCloud Lake if requested by a customer. The
installation on the nodes is handled automatically as a part
of QueryGrid provisioning. The QueryGrid setup on Teradata
enterprise platforms or non-Teradata systems requires
the customer to step through a self-service guided path,
provided through the VantageCloud Lake console.

Hive, Spark, and generic JDBC connectors are currently
supported on VantageCloud Lake for both AWS and Azure.
Generic JDBC and BigQuery are imminently available,
with Hive/Spark planned to follow shortly after. Additional
QueryGrid connectors will be available in the future,
providing VantageCloud Lake with even more outreach
to other data sources. Because each VantageCloud Lake
environment can connect to an on-premises platform
and other supported platforms within a CSP, expanded
QueryGrid enables a true hybrid multi-cloud solution.

More importantly, QueryGrid technology has been built
into the infrastructure of VantageCloud Lake as a pathway
connecting primary and compute clusters in a way that
is transparent to users. This internal communication layer
supports the passing of data, metadata, and optimized
query steps between different clusters and relies upon the
well-established QueryGrid functionality that has existed for
many years prior to VantageCloud Lake.

Today:
Preexisting features enrich VantageCloud
Lake capabilities

Teradata
VantageCore

+
VantageCloud

Lake
On-Premises

QueryGrid

QueryGrid

Hybrid Multi-Cloud Solution

Figure 16. QueryGrid enables a hybrid multi-cloud solution

Original QueryGrid™ Techniques Benefiting
VantageCloud Lake

Established Technique

QueryGrid

Carried Forward

Hybrid multi-cloud
access

Cluster-to-cluster
communication

Figure 17. QueryGrid repurposed to strengthen VantageCloud Lake

https://www.teradata.com

19

Evolution of existing techniques to enable OTFs
OTFs let customers store data in an open and standard
way that’s easily shared across different compute, analytic
engines, and tools without needing to manage multiple
copies of large datasets. Teradata supports a variety of
OTFs and open catalogs in multi-cloud and multi-data-lake
environments. Supporting multiple open catalogs, such as
AWS Glue, Hive, and Unity, removes the need for metadata
replication and promotes interoperability. Iceberg and
Delta Lake are the two OTFs initially supported on
VantageCloud Lake.

Access of OTF tables from a VantageCloud Lake
environment is implemented similarly to accessing OFF
tables using Native Object Store. Each AMP in a cluster is
given some share of the objects of an OTF table to read. And
just as with Native Object Storage access, all manipulations
and transformations are performed automatically and in
parallel. The optimizer will attempt to send all steps that
access data in OTF to compute clusters and builds a plan
based on
the cluster’s available processing power and the parallelism
it offers.

One difference with OTF and other storage tiers supported
on VantageCloud Lake is that none of an OTF table’s
metadata is stored in the data dictionary, but rather within
the object store itself. The format, makeup, and protocol for
interacting with the metadata is defined within the Iceberg
and/or Delta Lake specifications, an approach which enables
other OTF vendors to simultaneously access and manipulate
the OTF dataset. For security purposes, however, all access
to OTF data requires privileges to be granted.

OTF tables and catalogs reside in customer-owned and
managed cloud storage. Teradata OTF integrates with cloud
providers’ authentication and authorization mechanisms and
adheres to access controls to OTF tables and metadata. In
addition, the network connections are secured and all data in
transit and at rest is encrypted.

Teradata’s single-AMP access optimization provides a
highly efficient way to retrieve OTF table information for
schema discovery and also for accessing current metadata
in a specific catalog. But when it comes to accessing the
OTF data itself, each AMP shares in the work of reading and
transforming the OTF data. The same optimizer that has been
enabling performance of complex queries for decades has
made OTF tables a part of the family, so they can be easily
joined with other relational and non-relational data from any
storage tier.

Everything running on Teradata’s platform, including
OTF read or write, is tightly integrated with workload
management. These ever-present workload management
techniques mean that the administrator can assign OTF read
or write to execute at any desired priority point and control
concurrency effectively.

Today: Preexisting features enrich VantageCloud Lake capabilities

AWS Glue
Catalog

Unity
Catalog

Re
ad

/W
rit

e

Re
ad

/W
rit

e

Figure 18. Read/write access to OTF data in both Iceberg and Delta Lake

Techniques Benefiting VantageCloud Lake’s Open
Table Format Implementation

Established Technique

Parallelized access
across AMPs

Highly experienced
query optimization

Native Object Storage
infrastructure

Carried Forward

Each AMP reads its share of the
OTF table in parallel, improving

performance

Query planning mechanisms produce
efficient join planning with OTF and

other tables in block or object storage

Same infrastructure used to read
metadata, filter rows, and transform the

data being read into relational format

Figure 19. OTF implementation builds on established strengths

https://www.teradata.com

20

Evolution of analytics in VantageCloud Lake
All the extensibility mechanisms discussed earlier (UDFs,
external stored procedures, in-database analytics, and
support for open-source languages) are highly useful in
VantageCloud Lake today. A key advantage of VantageCloud
Lake is that these often-intense applications can be isolated
into their own set of compute clusters, where they will benefit
from dedicated resources and will not interfere with other
active work.

But an even more important opportunity relevant to
analytics has evolved in VantageCloud Lake: specialized
compute clusters. Specialized compute clusters are designed
specifically to meet the needs of complex and resource-
intensive analytic applications.

For example, the analytic cluster is a specialized cluster for
executing user scripts within containers against table data
using Teradata’s open analytics framework. What makes
analytic compute clusters different is that they come with
specialized hardware, and statements executing on them
have more memory and greater CPU available to them.

A second type of specialized compute clusters are graphics
processing unit (GPU) clusters. In a VantageCloud Lake
environment, specialized GPU units can be provisioned and
leveraged for performing complex mathematical calculations
in an efficient and parallel way.

The evolution of AI
Although generative AI is not new in concept, it is only
since late 2022, when OpenAI launched ChatGPT, that the
technology began getting a lot of attention.

VantageCloud Lake appeared at about the same time as
AI was becoming mainstream. VantageCloud Lake offers an
environment that supports large language models (LLMs)
and also supports generative AI with the benefit of running
in parallel for performance and scalability. Teradata’s
extensibility features along with the VantageCloud Lake
specialized compute clusters makes this possible. Bring
Your Own LLM is now realizable for both inferencing and
fine-tuning models against a customer’s actual data without
reaching out to public LLMs where this same data might not
be as secure.

VantageCloud Lake can also integrate with other vendors’
LLMs, such as Amazon Bedrock and Azure OpenAI Service.
This is the approach taken by Teradata’s ask.ai product, an
intelligent document search capability, which can evolve to
do natural query language. For example, ask.ai can provide
the correct SQL syntax for a detailed request, such as
calculating revenue totals for the current month by region,
and then presenting the results in a meaningful.

All these evolutionary threads in Teradata’s past in the
areas of database extensibility, in-database analytics, and AI
have come to fruition inside the VantageCloud Lake offering
today. The new cloud architecture strengthens these earlier
capabilities, allowing Teradata customers to do things that
would have been unbelievable just a year or two ago.

Today: Preexisting features enrich VantageCloud Lake capabilities

Existing Techniques Benefiting Analytics Processing
in VantageCloud Lake

Established Technique

Parallelized access
across AMPs

Established extensibility
techniques

Wealth of in-database
analytics and BYOM solutions

Carried Forward

Each AMP reads its share of the
data and performs analytics in

parallel

A more connected cloud solution,
greater integration with

third-party tools

Richer opportunities and more
complete management using

compute clusters

Figure 20. Analytics in VantageCloud Lake are boosted by established
Teradata capabilities

Teradata Strengths Carry Over Into VantageCloud Lake AI Capabilities

Established Technique

Interoperability and
integration with different

vendor tools

Carried Forward

Generative AI tools are easily
integrated, customers not limited when

training models or using LLMs

Established techniques are in
place to read and analyze

unstructured data for AI initiatives

Large volumes of accurate data are
often required when supporting AI

initiatives

Native Object Storage for
accessing external objects

Efficient processing of very
large data volumes

Query optimizer can react intelligently
to changes in data demographics,

typical of LLM processing

Highly flexible and mature
query optimizer

AI’s need for intense data prepping and
model training is supported by

Teradata’s long-established scalability

Scalability in the face of
unexpected growth

Figure 21. VantageCloud Lake AI capabilities are boosted by existing
Teradata capabilities

https://www.teradata.com

17095 Via Del Campo, San Diego, CA 92127     Teradata.com

The Teradata logo is a trademark, and Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and worldwide. Teradata continually improves products
as new technologies and components become available. Teradata, therefore, reserves the right to change specifications without prior notice. All features, functions and operations
described herein may not be marketed in all parts of the world. Consult your Teradata representative or Teradata.com for more information.

© 2024 Teradata Corporation     All Rights Reserved.     Produced in U.S.A.     09.24

Foundations are important. Teradata’s ability to reach out in
new directions and continue to sustain its core competencies
is a direct result of its strong, tried-and-true foundation. As
the Teradata database has grown and matured, the same
fundamentals have been adapted into new technology
advances. This is particularly true with VantageCloud Lake.

With an understanding of the foundational capabilities
that make up important building blocks of the Teradata
database, you can appreciate the elegance and durability of
the architecture. These features have, in many ways, stayed
consistent. At the same time, many have evolved from that
original architecture—building on it rather than replacing it.

These foundational components have proven essential each
step of the way as Teradata has continued to move forward—
whether integrating with mainframe databases, managing
mixed workloads, or advancing the world of analytics. Being
born in the enterprise does indeed foreshadow strength in
the cloud.

About Teradata
At Teradata, we believe that people thrive when empowered
with trusted information. We offer the most complete cloud
analytics and data platform for AI. By delivering harmonized
data and trusted AI, we enable more confident decision-
making, unlock faster innovation, and drive the impactful
business results organizations need most. See how at
Teradata.com.

Conclusion

https://www.teradata.com
https://www.teradata.com
https://twitter.com/Teradata
https://www.facebook.com/Teradata
https://www.instagram.com/teradata/?hl=en
https://www.linkedin.com/company/teradata
https://www.youtube.com/channel/UCV559dNBu0FRpuNLsrEKbzA
https://www.teradata.com/

